The undercut procedure: an algorithm for the envy-free division of indivisible items
نویسندگان
چکیده
منابع مشابه
The undercut procedure: an algorithm for the envy-free division of indivisible items
We propose a procedure for dividing indivisible items between two players in which each player ranks the items from best to worst. It ensures that each player receives a subset of items that it values more than the other player’s complementary subset, given that such an envy-free division is possible. We show that the possibility of one player’s undercutting the other’s proposal, and implementi...
متن کاملTwo-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm
T he problem of fairly dividing a divisible good, such as cake or land, between two people probably goes back to the dawn of civilization. The first mention we know of in Western literature of the well-known procedure, “I cut, you choose,” occurs in the Hebrew Bible, wherein Abraham and Lot divide the land that lies before them, with Abraham obtaining Canaan and Lot obtaining Jordan (Genesis 13...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn algorithm for envy-free allocations in an economy with indivisible objects and money
This paper studies envy-free allocations for economies with indivisible objects, quasilinear utility functions, and an amount of money. We give a polynomially bounded algorithm for finding envy-free allocations. Connectedness of envy-graphs, which are used in the algorithm, characterizes the extreme points of the polytopes of sidepayments corresponding with envy-free allocations. Classification...
متن کاملFair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods
We study the problem of fairly dividing a set of goods amongst a group of agents, when those agents have preferences that are ordinal relations over alternative bundles of goods (rather than utility functions) and when our knowledge of those preferences is incomplete. The incompleteness of the preferences stems from the fact that each agent reports their preferences by means of an expression of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Choice and Welfare
سال: 2011
ISSN: 0176-1714,1432-217X
DOI: 10.1007/s00355-011-0599-1